

ENGINEERING AND TEST DIVISION 1195 CHURCH STREET, BOHEMIA, LONG ISLAND, NEW YORK 11716 (631) 589-6300

TEST REPORT NO.: 419640-98-01-R24-0655

DAYTON T. BROWN, INC. JOB NO.: 419640

CUSTOMER: EG4 ELECTRONICS 1130 COMO ST. SOUTH SULPHUR SPRINGS, TX 75482

SUBJECT: ELECTROMAGNETIC SUSCEPTIBILITY TEST PROGRAM PERFORMED ON AN ESS WITH 18KPV AND LL WALL MOUNT/SERVER RACK

PURCHASE ORDER NO.: POEG40694

THIS REPORT CONTAINS: 40 PAGES

PREPARED BY:	Koth Way	K. MAY
TEST ENGINEER:	A. Alexandre	J. ALEXANDRE
QUALITY DEPARTMENT:	Dwayne Thome	D. THORNE
DATE:	AUGUST 29, 2024	

INFORMATION CONTAINED HEREIN MAY BE SUBJECT TO EXPORT CONTROL LAWS. REFER TO INTERNATIONAL TRAFFIC IN ARMS REGULATION (ITAR) OR THE EXPORT ADMINISTRATION REGULATION (EAR) OF 1979. IT IS THE RESPONSIBILITY OF THE RECIPIENT TO OBTAIN ANY REQUIRED LICENSES TO EXPORT ANY CONTROLLED DATA.

THE DATA CONTAINED IN THIS REPORT WAS OBTAINED BY TESTING IN COMPLIANCE WITH THE APPLICABLE TEST SPECIFICATION AS NOTE

Revision History

Table 1 -	Revision	History
-----------	----------	---------

Revision	Date	Section Affected	Change
-	08/29/2024	Original Release	-

Table of Contents

Revision History	2
Table of Contents	3
List of Figures	4
List of Tables	4
1.0 Abstract	
1.1 Test Summary	6
2.0 References	
3.0 Acronyms and Abbreviations	7
4.0 Administrative Information	8
5.0 Test Sample Information	
5.1 Modifications	9
5.2 Power Required	9
5.3 Interconnecting Cables	9
6.0 Test Sample Operation	10
6.1 Mode of Operation	
6.2 Susceptibility Criteria	
7.0 General Test Information	11
7.1 Test Facility	11
7.2 Setup	
7.3 Line Impedance Stabilization Networks	12
8.0 Test Instrumentation	
8.1 Tolerances	
8.2 Instrumentation Characteristics	14
9.0 Test Methods	15
9.1 Bonding Measurements	15
9.1.1 Test Procedure	15
9.1.2 Equipment List	15
9.1.3 Test Results	15
9.1.3.1 Bonding Measurement, Test Data	16
9.2 Radiated Susceptibility, Method RS105, Transient Electromagnetic Field	17
9.2.1 Purpose	17
9.2.2 Limit	17
9.2.3 Equipment List	18
9.2.4 Test Setup	18
9.2.5 Calibration	19
9.2.6 Test Procedure	20
9.2.7 Test Results	20
9.2.7.1 RS105, Calibration Data	
9.2.7.2 RS105, Test Data	
9.2.8 RS105, Test Setup Diagram(s)	31
9.2.9 RS105, Test Setup Photograph(s)	

List of Figures

Figure 1 - LISN Schematic	12
Figure 2 - RS105, Required Limit	17
Figure 3 - RS105, Calibration Verification Setup	
Figure 4 - RS105, Typical Test Setup	32

List of Tables

Table 1 - Revision History	. 2
Table 2 - EUT Components	
Table 3 - Test Summary	
Table 4 - Acronyms and Abbreviations	
Table 5 - Administrative Information	. 8
Table 6 - Power Required Control	. 9
Table 7 - Interconnecting Cables	. 9
Table 8 - Bonding, Equipment List	15
Table 9 - RS105, Equipment List	18

1.0 Abstract

This report details the results of the electromagnetic emissions and susceptibility test program on the ESS with 18kPV and LL Wall Mount/Server Rack. Testing was performed in accordance with Paragraph 2.0 and was performed at Dayton T. Brown, Inc., Bohemia, New York.

The ESS with 18kPV and LL Wall Mount/Server Rack, hereafter is referred to as EUT (Equipment Under Test).

The EUT components are as follows:

Component	Part No.	Model No.	Serial No.	
ESS with 18kPV and LL Wall Mount/Server Rack	Consisting of below			
18kPV Hybrid Inverter	N/A	18kPV-12LV/1V- 12000-HYB-AW- 00	3464660222	
EG4 LL280Ah 48V Wall Mount	N/A	EG4-LL/SR-48- 100-IN-01	SC2024010608	
EG4 LL100Ah 48V Server Rack	SC2022101794	51.2V100Ah	SC2022101794	

EUT information was provided by the customer.

Pre and post-test inspections revealed no external physical damage.

1.1 Test Summary

Table 3 lists the tests performed and the corresponding test results:

Test	Test Description	Limit	EUT Requiren		
	-			Yes	No
*RS105 Modified	Radiated Susceptibility, Transient Electromagnetic Field	MIL-STD-461G, Figure RS105-1, 50,000 V/m	EG4 LL100Ah 48V Server Rack, S/N: SC2022101794	x	
*RS105 Modified	Radiated Susceptibility, Transient Electromagnetic Field	MIL-STD-461G, Figure RS105-1, 50,000 V/m	EG4 LL100Ah 48V Server Rack, EG4 18kPV Hybrid S/Ns: SC2022101794, 3464660222	x	
*RS105 Modified	Radiated Susceptibility, Transient Electromagnetic Field	MIL-STD-461G, Figure RS105-1, 50,000 V/m	EG4 18kPV Hybrid Inverter, EG4 LL280Ah 48V Wallmount, S/Ns: 3464660222, SC2024010608	x	
*RS105 Modified	Radiated Susceptibility, Transient Electromagnetic Field	MIL-STD-461G, Figure RS105-1, 50,000 V/m	EG4 18kPV Hybrid Inverter, S/N: 3464660222	x	
*RS105 Modified	Radiated Susceptibility, Transient Electromagnetic Field	MIL-STD-461G, Figure RS105-1, 50,000 V/m	EG4 LL280Ah 48V Wallmount, S/N: SC2024010608	x	

Table 3 -	Test Summary
-----------	--------------

The test results recorded in this report apply only to the sample(s) as received and relate only to those items tested.

*See 9.2.2 for deviation

Note: At the customer's request, this document does not contain all of the information required by MIL-STD-461G. All pertinent MIL-STD-461G reporting requirements are maintained by DTB and can be made available upon request.

This report shall not be reproduced, except in full, without the written approval of Dayton T. Brown, Inc.

2.0 References

- a) MIL-STD-461G, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 11 December 2015.
- b) DI-EMCS-80200C, Data Item Description, Electromagnetic Interference Test Report (EMITR), 30 November 2007.

3.0 Acronyms and Abbreviations

The following acronyms and abbreviations may be used throughout this document:

Abbreviation Description Abbreviation Description A Amperes H-field Magnetic Field AC Alternating Current HERF Hazards of Electromagnetic Radiation to Puel AF Audio Frequency HERO Hazards of Electromagnetic Radiation to Ordnance Amp Amplifier HERP Hazards of Electromagnetic Radiation to Personnel Amps Amperes HIRF High Intensity Radiated Fields ASW Anil-submarine Warfare HPM High Power Microwave BIT Built in Test Hz Herz BW Bandwidth ISM Industrial, Scientific and Medical Cl Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo DC Direct Current M Mega DRG Double Ridge Guide m milli DRG Double Ridge Guide m Meter EField Electromagnetic Environmental Effects NDI Non-Developmental Item <t< th=""><th colspan="5">I able 4 - Acronyms and Abbreviations Acronym/ Description</th></t<>	I able 4 - Acronyms and Abbreviations Acronym/ Description				
AC Alternating Current HERF Hazards of Electromagnetic Radiation to Fuel Radiation to Fuel AF Audio Frequency HERO Hazards of Electromagnetic Radiation to Ordnance Amp Amplifier HERP Hazards of Electromagnetic Radiation to Personnel Amps Amperes HIRF High Intensity Radiated Fields ASW Anti-submarine Warfare HPM High Power Microwave BIT Built in Test Hz Hertz BW Bandwidth ISM Industrial, Scientific and Medical CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo DC Direct Current M Mega DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro EField Electromagnetic Environmental Effects NDI Non-Developmental Item EVACON Emission Control P-Static Precipitation Static EMC Electromagnetic Interference RBW		Description	Abbreviation	•	
AC Alternating Cutterint IERP Radiation to Fuel AF Audio Frequency HERO Hazards of Electromagnetic Radiation to Ordnance Amp Amplifier HERP Hazards of Electromagnetic Radiation to Personnel Amps Amperes HIRF High Intensity Radiated Fields ASW Anti-submarine Warfare HPM High Power Microwave BIT Built in Test Hz Hertz BW Bandwidth ISM Industrial, Scientific and Medical CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo DB Decibels LISN Line Impedance Stabilization Network DC Direct Current M Mega DAD or DOD Department of Defense m millii DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. µ micro E-Field Electromagnetic Compatibility p pico EMCC <t< td=""><td>А</td><td>Amperes</td><td>H-field</td><td></td></t<>	А	Amperes	H-field		
AF Autob Frequency HERO Radiation to Ordnance Amp Amplifier HERP Hazards of Electromagnetic Radiation to Personnel Amps Amperes HIRF High Intensity Radiated Fields ASW Anti-submarine Warfare HPM High Power Microwave BIT Built in Test Hz Hertz BW Bandwidth ISM Industrial, Scientific and Medical CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo dB Decibels LISN Line Impedance Stabilization Network DC Direct Current M Mega DO or DO Department of Defense m milli DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro EFeid Electromagnetic Environmental Effects NDI Non-Developmental Item EField Electromagnetic Environmental Effects PSitic Precipitation Static <td< td=""><td>AC</td><td>Alternating Current</td><td>HERF</td><td></td></td<>	AC	Alternating Current	HERF		
Amp Amperes HERP Radiation to Personnel Amps Amperes HIRF High Intensity Radiated Fields ASW Anti-submarine Warfare HIRF High Intensity Radiated Fields BW Bandwidth ISM Industrial, Scientific and Medical CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo dB Decibels LISN Line Impedance Stabilization Network DC Direct Current M Mega Dod or DOD Department of Defense m Meter DTB Dayton T. Brown, Inc. μ micro E3 or E ³ Electromagnetic Compatibility p pico EMCON Emission Control P-Static Precipition Static EME Electromagnetic Interference RBW Radio Frequency EMF Electromagnetic Interference RBW Resolution Bandwidth EMF Electromagnetic Interference RBW Resolution Bandwidth	AF	Audio Frequency	HERO		
ASW Anti-submarine Warfare HPM High Power Microwave BIT Built in Test Hz Hertz BW Bandwidth ISM Industrial, Scientific and Medical CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilio dB Decibels LISN Line Impedance Stabilization DC Direct Current M Mega Dod or DOD Department of Defense m milli DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro E3 or E3 Electromagnetic Environmental Effects NDI Non-Developmental Item ELF Extremely Low Frequency Ω Ohm EMC Electromagnetic Compatibility p pico EMC Electromagnetic Interference RBW Resolution Bandwidth EMICP Electromagnetic Interference RBW Resolution Bandwidth EMICP Electromagnetic Interference Test Procedure RF Radio Frequency EMICP Electromagnetic Interference Test Procedure T Tesla EMP Electromagnetic Interference Test T Tesla	Amp	Amplifier	HERP		
BIT Built in Test Hz Hertz BW Bandwidth ISM Industrial, Scientific and Medical CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo dB Decibels LISN Line Impedance Stabilization DC Direct Current M Mega DoD or DOD Department of Defense m milli DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro E3 or E ³ Electromagnetic Environmental Effects NDI Non-Developmental Item E-Field Electric Field n nano ELF Extremely Low Frequency Ω Ohm EMCC Electromagnetic Environment PRF Pulse Repetition Static EME Electromagnetic Interference RBW Resolution Bandwidth EMIP Electromagnetic Interference RF Radio Frequency EMITP Electromagnetic Interference Test Report T Tesla EMITP Electromagnetic Interference Test Report TEM Transverse Electromagnetic EMITP Electromagnetic Interference Test Report TPO Te	Amps	Amperes	HIRF	High Intensity Radiated Fields	
BW Bandwidth ISM Industrial, Scientific and Medical CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo dB Decibels LISN Line Impedance Stabilization Network DC Direct Current M Mega DoD or DOD Department of Defense m milli DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro E3 or E3 Electromagnetic Environmental Effects NDI Non-Developmental Item EVF Extremely Low Frequency Ω Ohm EMCC Electromagnetic Environment PRF Pulse Repetition Frequency EME Electromagnetic Interference RBW Resolution Bandwidth EMICP Electromagnetic Interference Control Procedure RF Radio Frequency EMITP Electromagnetic Interference Test Report RF Radio Frequency EMITP Electromagnetic Interference Test Report T Tes	ASW	Anti-submarine Warfare	HPM	High Power Microwave	
CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo dB Decibels LISN Line Impedance Stabilization Network DC Direct Current M Mega DoD or DOD Department of Defense m milli DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro E3 or E ³ Electromagnetic Environmental Effects NDI Non-Developmental Item E-Field Electric Field n nano ELF Extremely Low Frequency Ω Ohm EMC Electromagnetic Compatibility p pico EMCN Electromagnetic Interference RBW Resolution Bandwidth EMI Electromagnetic Interference RF Radio Frequency EMITP Electromagnetic Interference Test Procedure RF Radio Frequency EMITR Electromagnetic Interference Test Report T Tesla EMP <td< td=""><td>BIT</td><td>Built in Test</td><td>Hz</td><td>Hertz</td></td<>	BIT	Built in Test	Hz	Hertz	
CI Commercial Item ISO International Organization for Standardization CW Continuous Wave k Kilo dB Decibels LISN Line Impedance Stabilization Network DC Direct Current M Mega DoD or DOD Department of Defense m milli DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro E3 or E ³ Electromagnetic Environmental Effects NDI Non-Developmental Item E-Field Electric Field n nano ELF Extremely Low Frequency Ω Ohm EMC Electromagnetic Compatibility p pico EMCN Electromagnetic Interference RBW Resolution Bandwidth EMI Electromagnetic Interference RF Radio Frequency EMITP Electromagnetic Interference Test Procedure RF Radio Frequency EMITR Electromagnetic Interference Test Report T Tesla EMP <td< td=""><td>BW</td><td>Bandwidth</td><td>ISM</td><td>Industrial, Scientific and Medical</td></td<>	BW	Bandwidth	ISM	Industrial, Scientific and Medical	
dB Decibels LISN Line Impedance Stabilization Network DC Direct Current M Mega DoD or DDD Department of Defense m milli DRG Double Ridge Guide m Meter DTB Dayton T. Brown, Inc. μ micro E3 or E ³ Electromagnetic Environmental Effects NDI Non-Developmental Item E-Field Electric Field n nano ELF Extremely Low Frequency Ω Ohm EMCC Electromagnetic Compatibility p pico EMCON Emission Control P-Static Precipitation Static EME Electromagnetic Interference RBW Resolution Bandwidth EMI Electromagnetic Interference RF Radio Frequency EMIR Electromagnetic Interference Test Procedure RF Radio Frequency EMITR Electromagnetic Interference Test Report T Tesla EMP Electromagnetic Pulse TEM Transverse Electromagnetic ERP <td></td> <td></td> <td>ISO</td> <td>International Organization for Standardization</td>			ISO	International Organization for Standardization	
dBDecidesLISNNetworkDCDirect CurrentMMegaDoD or DODDepartment of DefensemmilliDRGDouble Ridge GuidemMeterDTBDayton T. Brown, Inc.μmicroE3 or E3Electromagnetic Environmental EffectsNDINon-Developmental ItemE-FieldElectric FieldnnanoELFExtremely Low FrequencyΩOhmEMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMEElectromagnetic InterferencePWMPulse Repetition FrequencyEMIElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Test ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectrostatic DischargeUHFUltra High FrequencyEMPElectrostatic DischargeUHFVitra High FrequencyEVGigaVVoltsFCGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	CW	Continuous Wave	k		
DoD or DODDepartment of DefensemmilliDRGDouble Ridge GuidemMeterDTBDayton T. Brown, Inc.μmicroE3 or E3Electromagnetic Environmental EffectsNDINon-Developmental ItemE-FieldElectric FieldnnanoELFExtremely Low FrequencyΩOhmEMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMFElectromagnetic InterferenceRBWResolution BandwidthEMIPElectromagnetic InterferenceRBWResolution BandwidthEMIPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticEMITRElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo Bandwidth	dB	Decibels	LISN		
DRGDouble Ridge GuidemMeterDTBDayton T. Brown, Inc.μmicroE3 or E3Electromagnetic Environmental EffectsNDINon-Developmental ItemE-FieldElectric FieldnnanoELFExtremely Low FrequencyΩOhmEMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMEElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromagnetic InterferenceRBWResolution BandwidthEMIPElectromagnetic InterferenceRFRadio FrequencyEMITPElectromagnetic Interference Test ReportrmsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo Bandwidth	DC	Direct Current	М	Mega	
DRGDouble Ridge GuidemMeterDTBDayton T. Brown, Inc.μmicroE3 or E3Electromagnetic Environmental EffectsNDINon-Developmental ItemE-FieldElectric FieldnnanoELFExtremely Low FrequencyΩOhmEMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMFElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromagnetic InterferenceRBWResolution BandwidthEMIPElectromagnetic InterferenceRFRadio FrequencyEMITPElectromagnetic Interference TrocedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFCFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo Bandwidth	DoD or DOD	Department of Defense	m	milli	
DTBDayton T. Brown, Inc.μmicroE3 or E3Electromagnetic Environmental EffectsNDINon-Developmental ItemE-FieldElectric FieldnnanoELFExtremely Low FrequencyΩOhmEMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMFElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMITRElectromagnetic Interference Test ReportTTeslaEMITRElectromagnetic Interference Test ReportTTeslaEMITRElectromagnetic Interference Test ReportTTeslaEMITRElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFoderal Communication CommissionVHFVery High FrequencyGGigaVBWVide	DRG		m	Meter	
E3 or E3Electromagnetic Environmental EffectsNDINon-Developmental ItemE-FieldElectric FieldnnanoELFExtremely Low FrequencyΩOhmEMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMEElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ProcedureTTeslaEMITRElectromagnetic Interference Test ProcedureTTeslaEMITRElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFViero BandwidthGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	DTB		μ	micro	
ELFExtremely Low FrequencyΩOhmEMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMEElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromotive ForcePWMPulse Width ModulationEMIElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency		Electromagnetic Environmental			
EMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMEElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo Bandwidth	E-Field	Electric Field	n	nano	
EMCElectromagnetic CompatibilityppicoEMCONEmission ControlP-StaticPrecipitation StaticEMEElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromagnetic InterferenceRBWPulse Width ModulationEMIElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo Bandwidth	ELF	Extremely Low Frequency	Ω	Ohm	
EMCONEmission ControlP-StaticPrecipitation StaticEMEElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromotive ForcePWMPulse Width ModulationEMIElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic Interference Test ReportTEMTransverse ElectromagneticEMPElectromagnetic Interference Test ReportTEMTransverse ElectromagneticEMPElectromagnetic PulseTEMTransverse ElectromagneticEMPElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	EMC		р	pico	
EMEElectromagnetic EnvironmentPRFPulse Repetition FrequencyEMFElectromotive ForcePWMPulse Width ModulationEMIElectromagnetic InterferenceRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	EMCON	Emission Control		Precipitation Static	
EMFElectromotive ForcePWMPulse Width ModulationEMIElectromagnetic Interference Control ProcedureRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMITRElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	EME	Electromagnetic Environment	PRF		
EMIElectromagnetic Interference Control ProcedureRBWResolution BandwidthEMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under Test FUUTUnit Under TestFFarad CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency					
EMICPElectromagnetic Interference Control ProcedureRFRadio FrequencyEMITPElectromagnetic Interference Test ProcedurermsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency		Electromagnetic Interference			
EMITPProcedureImsRoot-mean-squareEMITRElectromagnetic Interference Test ReportTTeslaEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency		Electromagnetic Interference	RF		
EMITRReportITestaEMPElectromagnetic PulseTEMTransverse ElectromagneticERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	EMITP		rms	Root-mean-square	
ERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	EMITR		Т	Tesla	
ERPEffective Radiated PowerTPDTerminal Protection DeviceESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	EMP	Electromagnetic Pulse	TEM	Transverse Electromagnetic	
ESDElectrostatic DischargeUHFUltra High FrequencyEUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency	ERP	Effective Radiated Power	TPD		
EUTEquipment Under TestUUTUnit Under TestFFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency					
FFaradVVoltsFCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency					
FCCFederal Communication CommissionVHFVery High FrequencyGGigaVBWVideo BandwidthGFEGovernment Furnished EquipmentVLFVery Low Frequency					
G Giga VBW Video Bandwidth GFE Government Furnished Equipment VLF Very Low Frequency		Federal Communication			
GFE Government Furnished Equipment VLF Very Low Frequency	G		VBW	Video Bandwidth	

Table 4 - Acronyms and Abbreviations

4.0 Administrative Information

a)	EUT Quantity Received:	3
b)	EUT Quantity Tested:	3
C)	Date EUT Received:	July 31, 2024
d)	Date(s) Tested:	July 31 to August 4, 2024
e)	Date EUT Shipped:	August 9, 2024
f)	Customer Representative(s) F	Present During All or Part of the Testing:
	Name	Affiliation
	Ashwanth Vitoba Prabakar	EG4 Electronics

5.0 Test Sample Information

5.1 Modifications

No modifications were made to the EUT during the course of this testing program.

5.2 **Power Required**

During testing, the input power was periodically monitored and maintained for the below condition:

Cable Length	Cable and Description	Current		
2 feet	2/0 Battery to Inverter Cable	140 A		
6 feet	4 AWG Battery to Inverter Cable	50 A		
6 feet	6 AWG Load Cable	50 A		
25 feet	Grid to Inverter Cable	N/A		
25 feet	Battery to Inverter Cable	N/A		

Table 6 - Power Required

5.3 Interconnecting Cables

The EUT was tested with the interface and power cables provided by EG4 Electronics. All leads in the shielded enclosure were a minimum of 2 meters. The EUT was configured with the following interfaces and cables:

· ····································			
Cable Length	Cable Description		
2 feet	EG4 Communication Cable		

6.0 Test Sample Operation

6.1 Mode of Operation

All testing was performed with the EUT operating as follows:

Operational:

- Inverters Powering the electrical loads. Powered through Utility power.
- ESS Powering the Electrical loads as a system.
- Batteries Powering the electrical loads by discharging the batteries.

Note: The mode of operation was supplied by the customer.

6.2 Susceptibility Criteria

During susceptibility testing, operation of the EUT was monitored for any indication of malfunction or degradation of operation. Operation of the EUT was monitored by the customer representative during the susceptibility testing for the following:

- Inverters The full functionality and reliability is monitored.
- Batteries The charging/discharging of the battery pack and functionality is monitored.
- The LCD screen of the batteries and inverters is monitored.

Note: The susceptibility criteria was supplied by the customer.

7.0 General Test Information

7.1 Test Facility

All testing was performed at Dayton T. Brown, Inc., Bohemia, New York.

7.2 Setup

For the RS105 testing, the EUT was supported above the ground plane, under the RS105 antenna, using dielectric material that produces a minimum distortion of the EMI field.

Interface cables passed through the shielded enclosure bulkhead to the anteroom via bulkhead aperture. This allowed their shields to be terminated at the bulkhead.

Photograph(s) of the test setups are included in each test method.

7.3 Line Impedance Stabilization Networks

The line impedance stabilization networks (LISNs) were inserted in each of the power leads

The cases of the LISNs were bonded to the ground plane.

All LISNs had their signal output port terminated into 50 ohms. Paragraph 4.3.6 of MIL-STD-461G has details of the LISN.

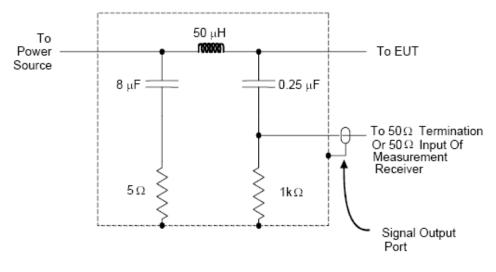
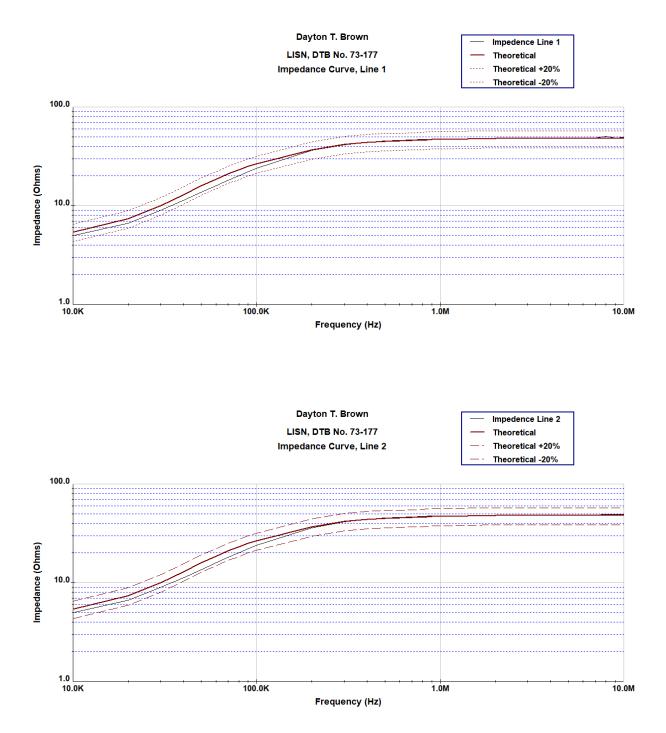



Figure 1 - LISN Schematic

8.0 Test Instrumentation

8.1 Tolerances

With any testing method there will be parameter variations due to the nature of testing. These parameter variations are controlled to be within a suitable range of the requirements of the specification. If no tolerances are given from the specification or customer procedure, any required parameter will have a tolerance of \pm 20% or \pm 6db, evaluated on a case by case basis.

8.2 Instrumentation Characteristics

Measurements are made using test equipment with performance monitored and, whenever possible, calibrated by the Dayton T. Brown, Inc. Metrology Department. The calibration system is set up to meet the applicable requirements stipulated in ISO/IEC 17025, ISO 9001, and ISO10012. All measuring instruments are calibrated with traceability to intrinsic, International, or National Standards such as NIST (National Institute of Standards and Technology) at periodic intervals. Details are on file at Dayton T. Brown, Inc., and will be made available upon request.

9.0 Test Methods

9.1 Bonding Measurements

9.1.1 Test Procedure

The DC resistance between the ground plane and the LISN is required to be 2.5 milliohms or less, as per MIL-STD-461G.

DC bonding measurements were made using a micro-ohmmeter. Measurements were taken from the LISNs to the ground plane.

9.1.2 Equipment List

rable o - Bonding, Equipment List					
ITEM	MANUFACTURER	MODEL	DTB NO.	SERIAL NO.	CAL DUE
					DATE
FACILITY, RS105	Dayton T. Brown	RS105 FACILITY	01e-061	N/A	No Cal
	-				Required
OHMMETER,	AEMC INSTRUMENTS	6255	9-252	130109TCDV	11/17/2024
MICRO 1 µOhm - 2.5					
kOhm					
L.I.S.N., 50 µH 4	Dayton T. Brown	461E-50-4	73-177	177	06/01/2025
LINE 20 AMP DC TO	-				
400 HZ					

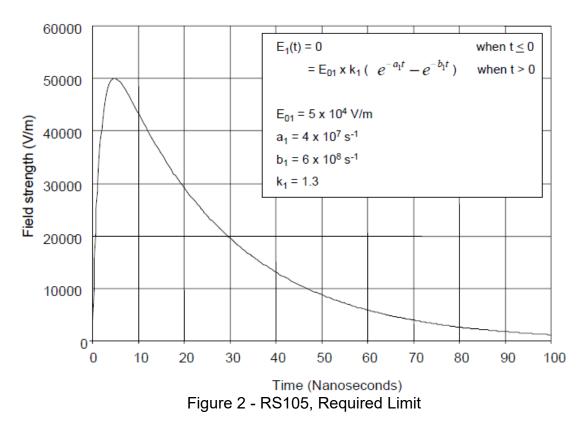
Table 8 - Bonding, Equipment List

9.1.3 Test Results

The Bonding Measurements met the requirements of MIL-STD-461G by verification to be less than 2.5 milliohms from the from the LISNs to the ground plane

9.1.3.1 Bonding Measurement, Test Data

Test Item:	EG4 LL280Ah 48V Wall Mount EG4 LL100Ah 48V Server Rack EG4 18kPV Hybrid Inverter	Date:	7/31/24
Customer:	EG4 Electronics	Serial No.:	See Table 2
Specification:	MIL-STD-461G	Job No.:	419640
Procedure:	MIL-STD-461G	Technician:	N.Vinas
Bonding Resist	ance Measurement	Met Requireme	ent Yes X No


Bonding Resistance Measurement

Measurement Point (From)	Measurement Point (To)	Bonding Resistance (milliohms)	Spec. Limit (milliohms)	Remarks
LISN	Ground Plane	1.2	2.5	

9.2.1 Purpose

The purpose of this test is to verify the ability of the EUT to withstand transient electromagnetic fields.

9.2.2 Limit

Deviation: Risetime of 6 ns to 8 ns.

9.2.3 Equipment List

ITEM	MANUFACTURER	MODEL	DTB NO.	SERIAL NO.	CAL DUE DATE
Monitor, Free Space Magnetic Field	Montena	MOL3000, BL3-5G, SFM2G	65-467	4971, 4937	No Cal Required
EMP SIMULATOR SYSTEM	FCC	RS105	01e-043	001	No Cal Required
OSCILLOSCOPE, DIGITAL 4 CHANNEL 1 GHZ	TEKTRONIX	DPO4104B	1175591	C031042	07/20/2025
L.I.S.N., 50 µH 4 LINE 20 AMP DC TO 400 HZ	Dayton T. Brown	461E-50-4	73-177	177	06/01/2025

Table 9 - RS105, Equipment List

9.2.4 Test Setup

The test setup is as detailed in Paragraph 7.2 of this document.

Prior to setting up EUT for testing, the uniform field area of the RS105 test setup was verified

The EUT was placed within the working volume of the RS105 antenna array in such a manner that it did not exceed the usable volume of the radiation system (h/3, B/2, A/2)/(x,y,z) as shown in Figure RS105-3 of MIL-STD-461G (h is the maximum vertical separation of the plates). The test sample was located below the RS105 antenna, in the center of the uniform field area. A magnetic field sensor was used to measure the field.

The EUT was supported by dielectric material that produced a minimum distortion of the electromagnetic fields.

Cables for EUT operation were oriented to minimize induced currents and voltages on the cables. Cabling was oriented normal to the electric field vector and in a manner that minimizes the loop area normal to the magnetic field vector. Cables were directed below the ground plane through a bulkhead to minimize pickup.

The test setup employed was as detailed in the test setup photograph(s).

9.2.5 Calibration

Before the EUT was installed in the test setup, the field strength of the RS105 setup was verified.

The magnetic field sensor was placed in the center position of the five-point grid in the vertical plane where the front face of the EUT will be located.

Using the magnetic field sensor, it was verified that the pulsed field produced met the peak amplitude, rise time, and pulse width.

For 50,000 V/m the required magnetic field was 132.63 A/m.

Electric Field Strength = Magnetic Field Strength x Impedance of Air

Where:

Electric Field Strength (Target = 50,000 V/m) Magnetic Field Strength Measured with sensor (Target = 132.63 A/m) Impedance of Air = 377 Ohms

The pulse waveform was recorded on the oscilloscope.

The pulse generator settings and associated pulse drive amplitude were determined to satisfy the field requirements.

This process was repeated at each of the other four points of the grid.

The peak value of the electric or magnetic field for each grid position was verified to be 0 dB < magnitude < 6 dB above limit.

The calibration setup is illustrated in Figure 3.

9.2.6 Test Procedure

The pulse was applied at the calibrated generator setting to ensure that the drive pulse waveform characteristics were consistent with those noted during calibration.

The pulse was applied starting at approximately 20% (minimum possible with RS105 simulator system) of the pulse peak amplitude determined in calibration. The pulse amplitude was increased in step sizes of 2 or 3 until the required level was reached.

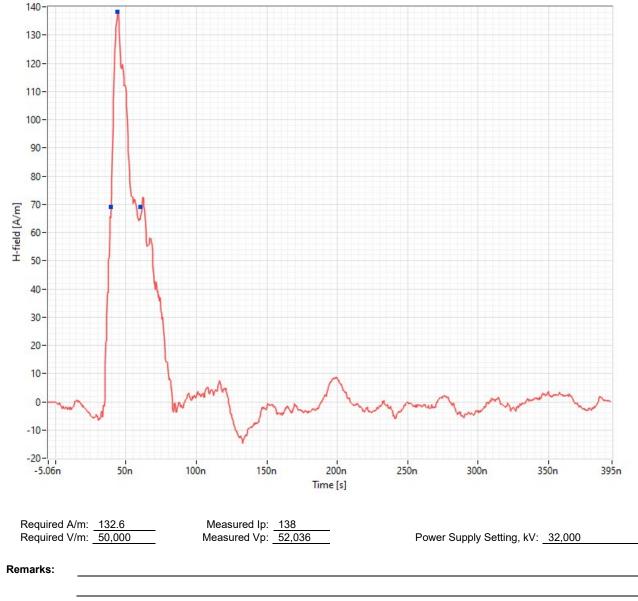
At least 5 pulses at a rate of not more than one pulse per minute were applied.

The EUT was monitored by the customer during and after each pulse for signs of susceptibility or degradation of performance.

The EUT was tested in three orthogonal orientations.

9.2.7 Test Results

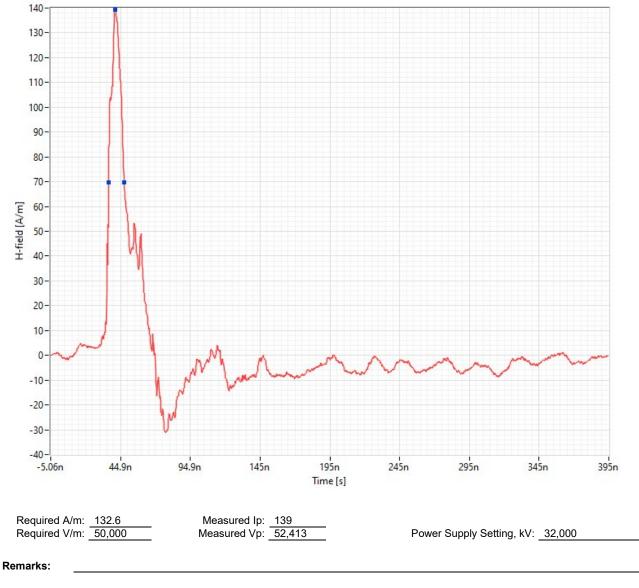
See Table 3 for EUT compliance.


See the following test data for detailed test results.

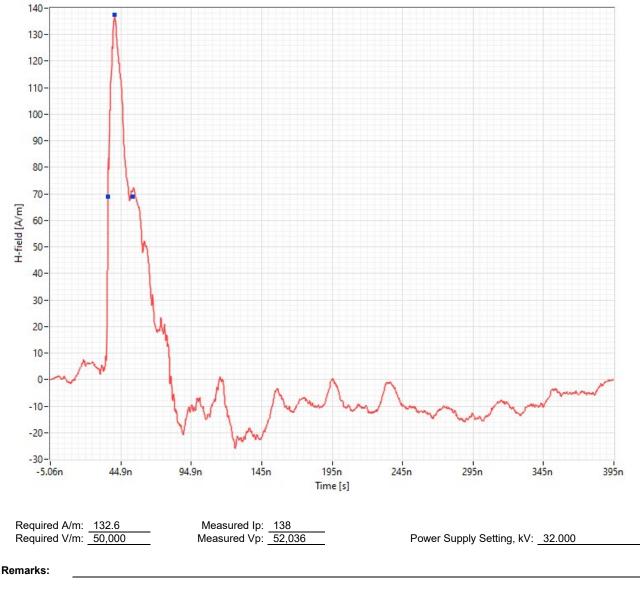
DAYTON T. BROWN INC. Founded 1950

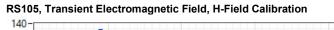
9.2.7.1 RS105, Calibration Data

Test Item:	EG4 LL280Ah 48V Wallmount EG4 LL100Ah 48V Server Rack EG4 18kPV Hybrid Inverter	Date:	7/28/2024
Customer:	EG4 Electronics	Amplitude:	50 kV/m
Test Mode:	Calibration, Rear Left	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	S. Gordon
Procedure:	MIL-STD-461G		

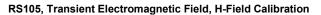

RS105, Transient Electromagnetic Field, H-Field Calibration

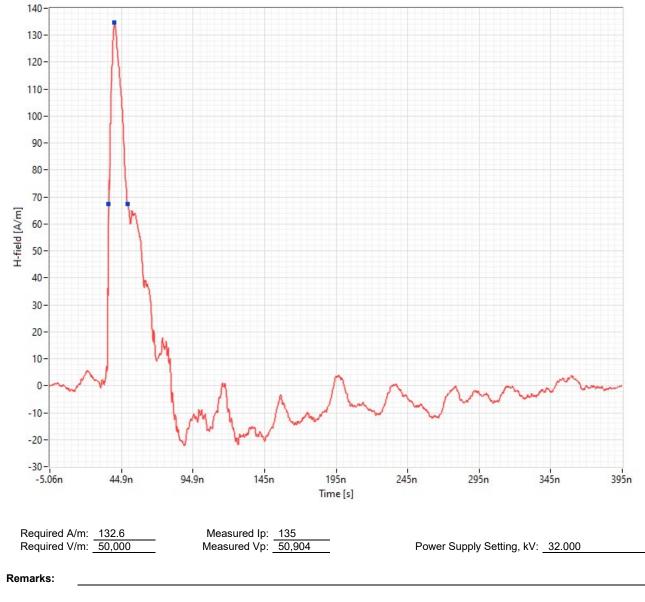
Test Item:	EG4 LL280Ah 48V Wallmount EG4 LL100Ah 48V Server Rack EG4 18kPV Hybrid Inverter	Date:	7/28/2024
Customer:	EG4 Electronics	Amplitude:	50 kV/m
Test Mode:	Calibration, Rear Right	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	S. Gordon
Procedure:	MIL-STD-461G		


RS105, Transient Electromagnetic Field, H-Field Calibration


Test Item:	EG4 LL280Ah 48V Wallmount EG4 LL100Ah 48V Server Rack EG4 18kPV Hybrid Inverter	Date:	7/28/2024
Customer:	EG4 Electronics	Amplitude:	50 kV/m
Test Mode:	Calibration, Front Right	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	S. Gordon
Procedure:	MIL-STD-461G		


RS105, Transient Electromagnetic Field, H-Field Calibration


Test Item:	EG4 LL280Ah 48V Wallmount EG4 LL100Ah 48V Server Rack EG4 18kPV Hybrid Inverter	Date:	7/28/2024
Customer:	EG4 Electronics	Amplitude:	50 kV/m
Test Mode:	Calibration, Front Left	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	S. Gordon
Procedure:	MIL-STD-461G		



Test Item:	EG4 LL280Ah 48V Wallmount EG4 LL100Ah 48V Server Rack EG4 18kPV Hybrid Inverter	Date:	7/28/2024
Customer:	EG4 Electronics	Amplitude:	50 kV/m
Test Mode:	Calibration, Center	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	S. Gordon
Procedure:	MIL-STD-461G		

9.2.7.2 RS105, Test Data

Test Item:	EG4 LL100Ah 48V Server Rack	Date:	8/3/2024
Customer:	EG4 Electronics	Serial No.:	SC2022101794
Test Mode:	Standalone	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	N. Vinas
Procedure:	MIL-STD-461G		

Radiated Susceptibility, Method RS105, Transient Electromagnetic Field

Met Requirement

Yes X No

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses.

 Required A/m:
 132.6

 Required V/m:
 50,000

Measured Ip: <u>135</u> Measured Vp: <u>50,895</u>

Power Supply Setting, kV: 28,140

Serial No.: SC2022101794, 3464660222
Job No.: 419640
Technician: N. Vinas
Job No.: 419640

Met Requirement

Yes X No

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses, as per the customer.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses, as per the customer.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses, as per the customer.

Required A/m: <u>132.6</u> Required V/m: <u>50,000</u> Measured Ip: <u>139</u> Measured Vp: <u>52,403</u>

Power Supply Setting, kV: 28,140

Test Item:	EG4 18kPV Hybrid Inverter, EG4 LL280Ah 48V Wallmount	Date:	8/4/2024
Customer:	EG4 Electronics	Serial No.:	3464660222, SC2024010608
Test Mode:	Standalone	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	N. Vinas
Procedure:	MIL-STD-461G		

Met Requirement

Yes X No

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.

Required A/m: <u>132.6</u> Required V/m: <u>50,000</u> Measured Ip: <u>136</u> Measured Vp: <u>51,272</u>

Power Supply Setting, kV: 28,140

Test Item:	EG4 18kPV Hybrid Inverter	Date:	8/2/2024
Customer:	EG4 Electronics	Serial No.:	3464660222
Test Mode:	Standalone	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	N. Vinas
Procedure:	MIL-STD-461G		

Met Requirement

Yes X No

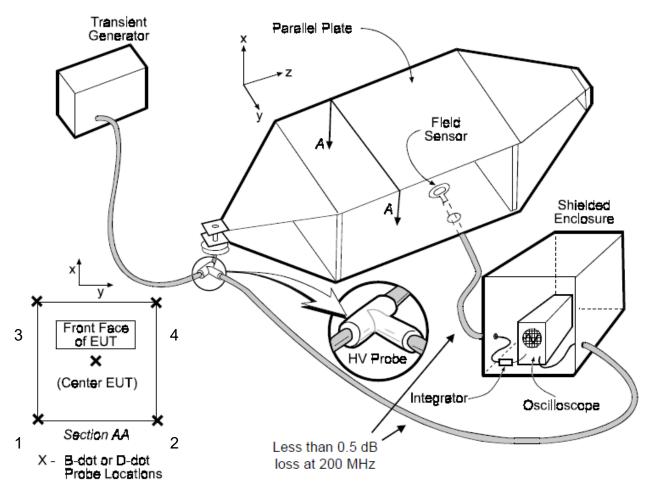
Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.

Required A/m: <u>132.6</u> Required V/m: <u>50,000</u> Measured Ip: <u>136</u> Measured Vp: <u>51,272</u>

Power Supply Setting, kV: 28,140

Test Item:	EG4 LL280Ah 48V Wallmount	Date:	8/4/2024
Customer:	EG4 Electronics	Serial No.:	SC2024010608
Test Mode:	Operational	Job No.:	419640
Specification:	MIL-STD-461G	Technician:	N. Vinas
Procedure:	MIL-STD-461G		

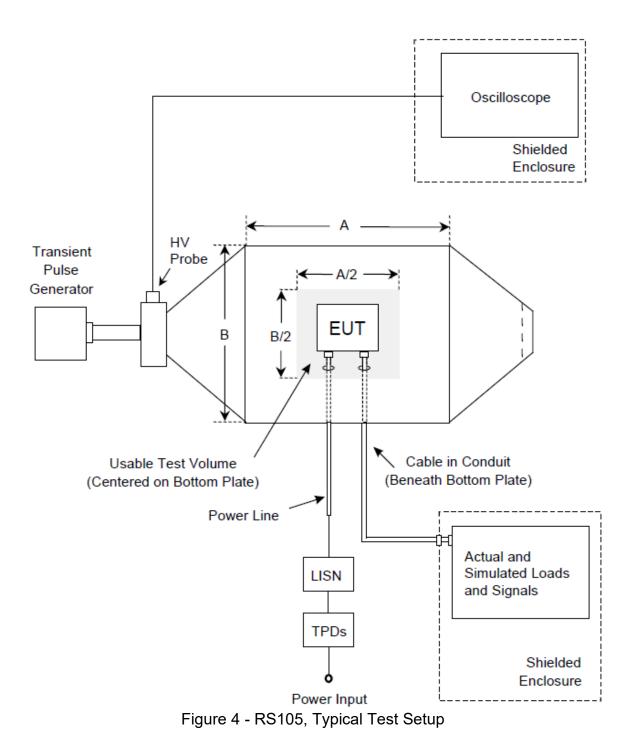
Met Requirement


Yes X No

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses as per the customer.

Required A/m: <u>132.6</u> Required V/m: <u>50,000</u> Measured lp: <u>141</u> Measured Vp: <u>53,157</u>

Power Supply Setting, kV: 28,140



9.2.8 RS105, Test Setup Diagram(s)

Figure 3 - RS105, Calibration Verification Setup

TOP VIEW

9.2.9 RS105, Test Setup Photograph(s)

EG4 18kPV Hybrid Inverter EG4 LL280Ah 48V Wallmount on X Axis

EGyELEC	TRONICS	MADE IN CHINA
Lithium Iron Pho	sphate Battery	
Model	51.2V100Ah	
Norminal Voltage	51.2V	
Rated Capacity	100Ah	
Rated Energy	5120Wh	
Voltage Range	44.8~56.0V	
Temperature	Charge: 32~113°F (0~45℃)	
Range	Discharge: -4~122°F (-20~50°C)	
Charging Voltage		
Year Manufactured	2022	
PN: SC20	22101794	
		•

Part Number of EG4 LL100Ah 48V Server Rack (Serial No. SC2022101794) 419640-98-01-R24-0655

EG4 18kPV Hybrid Inverter (Serial No. 3464660222) with EG4 LL100Ah 48V Server Rack (Serial No. SC2022101794) on X Axis

Serial Number of EG4 18kPV Hybrid Inverter (Serial No. 3464660222)

Test Setup of EG 4LL100Ah 48V Sever Rack (Serial No. SC2022101794) and EG4 18kPV Hybrid Inverter (Serial No. 3464660222) on X Axis

Test Setup of EG4 LL100Ah 48V Server Rack (Serial No. SC2022101794) and EG4 18kPV Hybrid Inverter (Serial No. 3464660222) on Y Axis

Test Setup of EG 4LL100Ah Server Rack (Serial No. SC2022101794) and EG4 18kPV Hybrid Inverter (Serial No. 3464660222) on Z Axis

Test Setup of EG4 18kPV Hybrid Inverter (Serial No. 3464660222) on Z Axis

Test Setup of EG4 18kPV Hybrid Inverter (Serial No. 3464660222) on Y Axis

Test Setup of EG4 18kPV Hybrid Inverter (Serial No. 3464660222) on X Axis

Test Setup of EG4 LL100Ah 48V Server Rack (Serial No. SC2022101794) on X Axis

Test Setup of EG4 LL100Ah 48V Server Rack (Serial No. SC2022101794) on Z Axis

Test Setup of EG4 LL100Ah 48V Server Rack (Serial No. SC2022101794) on Y Axis

Test Setup of Unit EG4 18kPV Hybrid Inverter (Serial No. 3464660222) and EG4 LL280Ah 48V Wallmount (Serial No. SC2024010608) in Z Axis

Test Setup of Unit EG4 18kPV Hybrid Inverter (Serial No. 3464660222) and EG4 LL280Ah 48V Wallmount (Serial No. SC2024010608) in Y Axis