STRUCTURAL CALCULATION & ANALYSIS EG4® BRIGHTMOUNT ADJUSTABLE GROUND MOUNT SYSTEM

Design Standard: ASCE 7 Design Information

The following example analysis shows provisions for design wind loads complying with the ASCE 7 standard for ground mounted solar arrays. Calculations may vary depending on certain criteria influenced by the area of location where the array will be mounted, check specifications pertaining to your area using a wind hazard map when referencing this information.

Parameters in this analysis are determined with 105mph (47m/s) wind speed rating for this ground mounted solar array.

Test data uses compression-tension testing and simulations on structural members (TGI, SAP2000).

This information is not by any means to be used in substitution of a Professional Engineer certification, yet to supplement for better understanding of the analysis for design wind loads on ground mounted solar arrays.

Installation Site Information

Design Condition and Technical Parameters:

Solar Panel Size	230 x 110 x 3.5cm (90.6 x 43.3 x 1.4in.)
Solar Panel Power	550W
Solar Panel Weight	30 kg (66.1 lbs.)
Basic Wind Speed	47m/s
PV Area	2.53m ²
Span	1.3m

Calculations

Category I = 1.0 ----- Importance Factor, refer to ASCE 7-16, Table 1.5-1

Velocity Pressure due to Wind, qz:

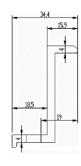
$q_z = 0.613 K_z K_{zt} K_d K_e V^2$	Velocity Pressure due to Wind, refer to Table 27.3-1, ASCE 7-16
K _z = 1.0	Velocity Pressure Exposure Coef. (for structures < 4.57m high, Exposure C)
K _{zt} = 1.0	Topographic Factor, refer to Figure 26.8-1, ASCE 7-16
$K_d = 0.85$	Directionality Factor
K _e = 1.0	Ground Elevation Factor
V = 47 m/s	Basic Wind Speed

 $q_z = 1150 \text{ N/m}^2$

Design Wind Pressure, p:

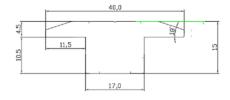
$p = q_z G C_n$	Design Wind Pressure, adjust Cn for windward and leeward pressure
G = 0.8	Gust Effect Factor, assume rigid, Section 6.5.8, ASCE 7-05
C _n = -1.8	Net Pressure Coef. determined from Fig. 6-18A, ASCE 7-05
$p = 1760 \text{ N/m}^2$	

Snow Load, pf:

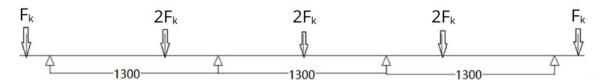

$p_f = 0.7 C_e C_t I_s p_g$	Snow Load, flat surface, refer to Ch. 7, ASCE 7-16
$C_e = 0.9$	Exposure Factor
C_t = 1.2	Thermal Factor, refer to Table 7.3-2, ASCE 7-16
I _s = 0.8	Importance Factor, refer to Table 1.5-2, ASCE 7-16
p_g = 478.81 N/m ²	Ground Snow Load, Figure 7.2-1, ASCE 7-16
$p_f = 289.59 \text{ N/m}^2$	
$p_s = C_s p_f + p_r - \cdots$	Sloped Snow Load
$C_s = 0.72$	Slope Factor, Figure 7.4-1, ASCE 7-16
$p_r = 0.0$	Rain-on-Snow Surcharge Load
$p_s = 210.53 \text{ N/m}^2$	
W _c = 27.61m	Hypotenuse from Eave to Ridge
W = 25.03m	Horizontal Distance from Eave to Ridge
W/50 = 1.64 deg	if $p_g \le 20$ psf, $p_g \ne 0$, tilt angle > W/50, $p_r = 0.0$, for rainy areas, $p_r = 5$ psf

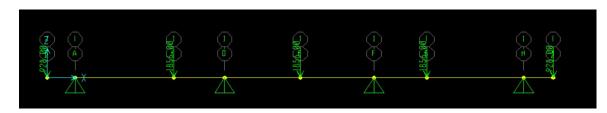
Stress Analysis

Compression Tension Simulation (TGI Series, SAP2000)

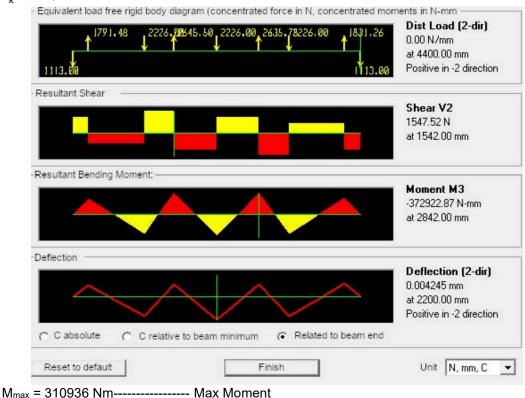

Component: End Clamp

$F_t = \frac{PA}{N_c}$	Shear Force by Wind Suction
P = 1760 N/m ²	Design Wind Pressure
$A = 2.53m^2$	PV Area
N_c = 4	Number of clamps per module
$F_t = 1113.2 \text{ N}$	
F_{max} = 5972 N	F _t does not exceed F _{max}
(refer to test report No. TGI-TS-0	002)


Component: Mid Clamp

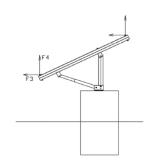

$F_t = \frac{PA}{N_c}$	Shear Force by Wind Suction
P = 1760 N/m ²	Design Wind Pressure
A = 2.53m ²	PV Area
N _c = 4	Number of clamps per module
$F_t = 1113.2 \text{ N}$	
F _{max} = 16098 N	Ft does not exceed F _{max}
(refer to test report No. TGI-TS-0	001)

Component: Rail


Free Body Diagram:

$$F_k = \frac{PA}{N}$$
 ----- Shear Force by Wind Suction

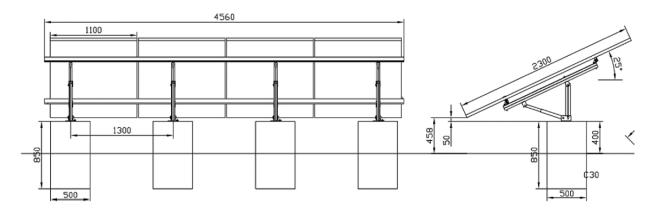
 $F_k = 1113 \text{ N}$

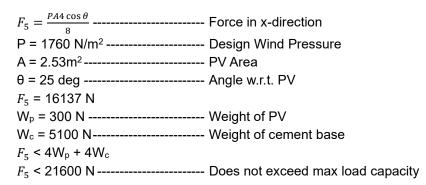

----- Max Stress

 σ_{max} = 240 MPa----- Does not exceed max load capacity

 $=\frac{M_{max}}{W_{y}}$

Component: Main Beam


$F_3 = \frac{PA4\sin\theta}{8}$	Force in x-direction
P = 1760 N/m ²	Design Wind Pressure
A = 2.53m ²	PV Area
θ = 45 deg	Angle w.r.t. PV
$F_3 = 1574 \text{ N}$	
$W_{y1} = 7505 \text{ m}^3$	Elastic Modulus



 ${\rm M}_{max}$ = 851968 Nm------- Max Moment $\sigma_{max} = \frac{{\rm M}_{max}}{{\rm W}_{y1}} ------ {\rm Max Stress}$ σ_{max} = 240 MPa------ Does not exceed max load capacity

Component: Cement Base

Report No. TGI-TS-002

TEST REPORT

Received No.: 62-01-083 Report No: TGI-TS-002

Rev.:00

Customer's company name: Sunforson Power CO.,LTD

Address: 20/27 Soi Bang Na-Trat 56 Bangna District T.Bangkaew A.Bangplee Bangkok,

Thailand

Part Name:	End Clomp	Material Characterization:	
Part No:		Standard of Test:	
Supplier:	-	Type of Test:	Tensile Testing
Material Specification:		Equipment / Serial No.:	Universal Testing Machine
Received Date:	24 / Jan. / 2019	Equipment's Capacity:	Tension force 10 tons
Tested Date:	07 / Feb. / 2019	Ambient Temp.:	23.5 °C,65 % RH

Result of Tensile Test

Test No.	Max Load (N)	Max Load (kgf)
1	6,150.779	626.990
2	5,971.995	608.766
3	6,178.216	629.787

Operated by: ..

Sumapit Testing Operator

Technical Team

Checked by: ..

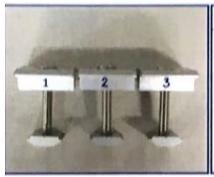
Mr.Arun Jeangsrijaroen Technical Manager

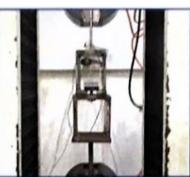
Approved by:

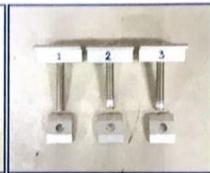
Mr.Arun Jeangsrijaroen Ouality Manager

Report No. TGI-TS-001

TEST REPORT


Received No.: 62-05-113 Report No: TGI-TS-001


Rev.:00


Customer's company name: Sunforson Power CO.,LTD

Address: 20/27 Soi Bang Na-Trat 56 Bangna District T.Bangkaew A.Bangplee Bangkok, Thailand

Part Name:	Mid Clamp	Material Characterization:	*
Part No:		Standard of Test:	
Supplier:		Type of Test:	Tensile Testing
Material Specification:		Equipment / Serial No.:	Universal Testing Machine
Received Date:	30 / May / 2019	Equipment's Capacity:	Tension force 10 tons
Tested Date:	06 / June / 2019	Ambient Temp.:	24.7 °C,62 % RH

Result of Tensile Test

Test No.	Max Load (N)	Max Load (kgf)
1	16,098.056	1,640.984
2	20,706.604	2,110.764
3	20,379.571	2,077.428